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Influence of timescale ratio on scalar flux
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A second-order modelling technique is used to investigate the behaviour of homo-
geneous scalar turbulence. Special attention is paid to the influence of timescale ratio
on scalar flux relaxation. We develop a model for the scalar flux equation in a
homogeneous turbulence and consider both a scalar field without mean-scalar
gradients and one with constant mean-scalar gradients based on Sirivat & Warhaft
(1981) experiments. Good agreement with experiment in all the cases is obtained.

1. Introduction

In this paper we study a homogeneous passive scalar field in a decaying,
homogeneous turbulence without mean velocity using a second-order modelling
technique. We consider both a scalar field without mean-scalar gradients and one with
constant mean-scalar gradients based on Sirivat & Warhaft’s (1981) experiments.

Newman, Launder & Lumley (1981) studied these two fundamental flows. Their
paper presented a model for the scalar dissipation equation ¢, = «{8 ;6 ;> and
pointed out the importance of considering varying the timescale ratio,
r = (q%/€)/(0%) /eg), from flow to flow. The main contribution of this paper lies in
the provision of a model for the return to isotropy in the scalar flux equation. This
model is also strongly dependent on the timescale ratio. Sirivat & Warhaft’s
experiments provide data for various timescale ratios and therefore are very useful
for testing various closure models.

We calculate three flows without mean-temperature gradients and seven flows with
constant mean-temperature gradients. The good agreement with experiment gives
us confidence that our model can provide a basis for models describing more complex
scalar flows.

2. A model for the scalar flux equation in homogeneous turbulence
Preliminaries

The exact transport equations describing the evolution of the intensity of scalar
fluctuations in a homogeneous turbulent flow without mean velocity and buoyancy
may be written as (Lumley 1978)

0%, +2{0u; O ;+<0u;) ; = —2¢, 2.1
Cugug) ;= —€fby;—3edy, (2.2)
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9 ¢Ou.
Ouy +<uyu) O+ Ou;up ;= ﬁ%ﬁﬁ (2.3)
—e2
€1+ <UD i =—_<6¢2>€0’ (2.4)
— e
€= o (2.5)

where @ is the mean-scalar distribution, { ) stands for averaging, ¢, = k(0 ;6 ;> the
dissipation rate of 1(6%), ¢ = v{u; ;u, ;> the dissipation rate of 1¢% ¢*= {u;u,;>
and b;; = {u;u;>/q*—130;;. To close (2.1)—(2.5) we need expressions for third-order
moments (%), {Bu,u;), {ezu;y and for g, ¢, Y% and . All the models except for
¢Y; are discussed in detail by Lumley (1978). Here we concentrate on ¢, which is
responsible for return to isotropy in the scalar flux equations. We can show that

% =0 (i % j) and assume ¢, is an isotropic tensor; then ¢%<fu;> may be written
as ¢°(fu,», as most workers do. A number of workers choose different constant values
of ¢% in their particular flows. For example Zeman & Lumley (1979) chose ¢¢ = 7.5
and Newman et al. (1981) chose ¢/ = 6.6. In general, ¢? should not be a constant.
Based on realizability, Lumley (1978) obtained a complicated tensor expression for
@9 which included the effects of timescale ratio, anisotropy, Reynolds number and
correlation coefficient of & and ;. In this paper we develop a simpler (and more
convincing) form for ¢¢, also based on realizability. We find that ¢? also includes the
effects of all quantities mentioned above. While the inclusion of the timescale ratio
in Lumley (1978) was a formal deduction, here it is in addition a necessity made
evident by the data.

2.1. Model for ¢°

In a homogeneous flow without mean velocity and mean-scalar gradients, the
equations for scalar flux, variance and Reynolds stress are

—df )
(Buy,, = —ER0u2e (2.6)
(02>,t = —2¢4, (2.7)
{uy u;) o = —€fb;;—3€d;;. (2.8)
Let us introduce a scalar F':
F =1+27111 +911, (2.9)

where  11=—1b,by, 11 =1b,b, by by=Ry—30, Ry= O‘—q:‘ﬁ
Expression (2.9) is nine times the invariant expression introduced in Lumley (1978),
where the factor of nine is introduced for numerical convenience.

The normalized Reynolds-stress tensor has the following properties:

Ry=R;, R;=1, (2.10)

and the eigenvalues of R,; are non-negative.
Using (2.10), F can be written as

F =9R}—%R% +4, (2.11)
where R} =R,R,;, R}=R,R, R,
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We can show that 0<F<L. 2.12)
In fact, it is straightforward to show that F is 27 times the product of the three
eigenvalues of R (the third principal invariant of R;), so that it will vanish if and
only if one (or more) of these vanishes. An eigenvalue vanishes if, in non-principal
axes, a component vanishes or Schwarz’s inequality becomes an equality.

Using (2.8) and ¢?; = —2¢, we obtain

(B—2) (9111 +211)e
— z .
To satisfy realizability, and guarantee that ¥ remain non-negative, we require that
F, vanish as F vanishes, i.e.

F,= (2.13)

F,~0 asF—0. (2.14)

This is necessary, but not sufficient, to guarantee that F > 0; we should say
something about higher derivatives. Since turbulence will remain two-dimensional
until disturbed, we expect that

F,=F,=..-0 asF-0.

Since 9111+ 2II vanishes only if the turbulence is one-dimensional or isotropic, we
assume

B=2+GF, (2.15)

where (@ is a function of invariants and other parameters. More general forms are
possible, but do not appear to be necessary. This is the minimum sufficient to assure
(2.14), and is consistent with the form given by Lumley (1978). Comparing with
Lumley’s form, @ should be

G =} exp[—D/R}1(72/R} + A In[1 + B(— 11+ C1II))), (2.16)
Wwhere A=80.1, B=624, C=23, D=171.
Similarly to the above procedure, we introduce a normalized tensor D,
D, = 02> Cus u) — COuy) {Buy

) 2.17
GOV T CT &1
which has the same properties as R, i.e.

and the eigenvalues of D, are non-negative (see Lumley 1978). If we introduce a
scalar Fy,
Fp=9D}—%4D% +3, (2.19)

we shall be able to show that
O0<F,<1. (2.20)
In fact, in the principal axes of Dy,
F,=21D,,D,, Dyy, D, ,+Dy+Dyy=1, (2.21)

which follows from (2.19). Thus, F, is proportional to the third invariant of D,;.
Similarly to F, non-negative F), will give a realizability condition that Fj, , must
vanish as Fj, vanishes, i.e. :
Fp >0 as Fp,—0. (2.22)
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In addition, Lumley (1983) shows that F, will not stay at the state of F;, = 0 when
F;, vanishes, unlike F. So we must also require

F,,.>0 asF;,->0. (2.23)

This can be only satisfied if ¥, , o F}) as F,—>0. The conditions (2.22) and (2.23)
will guide us to find a form for ¢¢. We have from (2.19)

Fp,s=21(Dy; ; Dy Dyy— Dy, Dyy). (2.24)
Using (2.6)—(2.8), we can write
p, =% >e{b,,(w’ 2r—p)+ 8 —i (2¢0— 2r—2)} (2.25)
dpp D”

where d,,, = {0%) Cupu,) —<Ou,) (OBu,d, r = (¢°/€)€/<{6*). Substituting (2.25) into
(2.24) gives

6% ¢

Fp,,= 27( d >{(Dtj by Dii— by Dy +4D3,— DY —3)(2¢° — 2 — B)

+[3D5— D —31(6—2)}.  (2.26)

If we use (2.19) to express D}, in terms of F, and D%, and require that the part not
proportional to Fj, vanish proportional to Ffl,, we obtain

¥B—2)[(1—D})/6]
bjicDm—btthj (1—D3)/6

H is an undetermined function of the timescale ratio r, invariants of D, etc. This
is the form of ¢? we are looking for, which will ensure that (2.22) and (2.23) are
satisfied. As before, more complex forms of the final term in (2.27) are possible, but
do not appear to be necessary. In thc case of isotropic turbulence (b;; = 0), the form
of ¢? (2.27) becomes

pp

6 —1 _ 1
¢? =18+ B, +HF}, (2.27)

¢% = 1 +r+ H(Fp). (2.28)

The function H has to be determined by experiments. We find that good agreement
with Sirivat & Warhaft’s (1981) experiments (for different mean-temperature gradients
and different timescale ratios) is obtained by taking H = 1.172.

3. Flows with and without constant mean-temperature gradients

The equations for a homogeneous isotropic turbulence with constant mean-
temperature gradient are

<02),,+2<0w)g—z - 2, (3.1)
7?, = —2¢, (3.2)

up, o+ oty 2 = ZEGe, (33)
€50 = zg;e", (3.4)

¢, =¥ (3.5)

q2
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06 /ox {0 exp —{0wexp €gexp 6*>car —{O0w)eq) €6cal
(°C/m) °C? (°C m/s) (°C*/s) °C* (°C m/s) (°C*/s)
10.3 0.01280 0.01101 0.093 46 0.01280 0.01101 0.08500

3.68 0.001705  0.003981 0.01120 0.001705 0.003918 0.0105
4.48  0.002287 0.003978 0.01492 0.002287  0.003978 0.01592

0% expr COWDexps Egexp — €Xperimental results at x/M =40, (6%, Owdey), €gear — initial
conditions for calculations.

TaBLE 1. Initial conditions at /M = 40 for U = 3.4 m/s

ae/ax <02>exp - <0w>exp e <02>cal - <0w>cal eﬂcnl

coimy R cemy Gy (°C*)  (Cm/s)  (°C¥/s)
1.81 0.0004471 0.0009456 0.001240 0.0004471 0.0009456 0.001 300
8.1 0.009059 0.005551 0.02428 0.009059 0.004 551 0.02500

2.24% 0.0009240 0.0009336 0.002091 0.0009240 0.0009336 0.001580
1.78  0.0004955 0.0006401 0.001515 0.0004955 0.0006401 0.00185

t Values given at /M = 80. Notation as in table 1.
TaBLE 2. Initial conditions at z/M =40 for U = 6.3 m/s

Initial conditions for {62}, ¢%, (6w}, ¢; and ¢ (tables 1 and 2) are given by Sirivat
& Warhaft’s (1981) experiments for different mean-temperature gradients 06 /ox,.
{Bw) (in the z,-direction) is the only non-zero component of the heat flux.
The models for ¢%, Y and  are
1—p? (Ow)?
0 = é = ——p 2= 7
¢ 1+T+1.17’2FD, FD (1_p2/3)37 p <02> <w2>7

2— 00
Yl = 2——r%+2.05(0w> (a—x;) /eo, Voo =¥ +0.98 exp [—2.83Ri]

¥ =¥
To normalize (3.1)—(3.5), we define
’ 9 2\’ <02> r ¢ s x3
e Ty % ™’ ; N
2
q2/ = _q—2-3 6; 60 ’ f= 36 )
3ug TPuy/l, uy/ly
w?) , _ (Ow)
2 ’ = — 2/ =
Gty =S =¥, Cowy =2,

where u,, [, and T are the turbulent fluctuating velocity, length and temperature
scales at the first measuring position.
The equations become

(02>',+2(0w>’ﬂ = —2¢g,
' Oz,
¢ =—%
,a@’
Ow)’, +¢* — 1670w’ =, &
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e
— ()
eé,t - —W<02>/ ’

’2
€
- llb-__
6,[, 3 qz/,

The values of u,, [, are determined from data at the first position x/M = 40 where
M is mesh size of the grid and z is downstream distance from the grid. Sirivat &
Warhaft’s (1981) data give the following relations:

W _p(z), R N 1. (o S

i M e ST a o T

where E = 0.0468, a = —1.24 for the case of U= 3.4 m/s (mean velocity) and
E =0.0622, a = —1.29 for the case of U = 6.3 m/s, the mesh size M = 0.025 m; we
can calculate {(w?) and ! at /M = 640 and choose u, = {w®)i, I, = l at /M = 40.
In our calculations we chose 7' = (6%)} at /M = 40, and the values of u, and [,
are respectively 0.074701 m/s and 0.011071 m for the case of U =3.4m/s, and
0.145515 m/s and 0.011937 m for U = 6.3 m/s.

We carried out calculations for flows with different mean-temperature gradients
06 /dx,. Three flows without mean-temperature gradients 06 /dx, = a = 0, but with
different timescale ratios were calculated. The calculations shown on figure 1 are in
very good agreement with experiments. To see the influence of the timescale ratio
on the calculations, we also plot the results with r = 1 in figure 1. Obviously, in the
second and third plots the calculations with fixed r = 1 (dashed lines) deviate from
experiment. This is because r = 1 underestimates the temperature dissipation rate €,
and hence causes the temperature intensity (%) to decay too slowly.

We also carried out calculations for seven flows with different constant mean-
temperature gradients (00 /0x; = « % 0). The normalized temperature intensity
{6*)’, heat flux (fw)’, temperature dissipation rate ey, and timescale ratio r are shown
in figures 2-10. The dashed lines (which correspond to r = 1) in the figures show the
influence of the timescale ratio on the calculations. In figure 11, we show the influence
of the form of @° on the calculations. If we choose ¢? to have a constant value of 4.8,
the calculationsin several cases (forexamplea = 1.81 °C/m) could fit the experimental
data reasonably well but in other cases (say a = 1.78 °C/m) the calculations will fail
(see figure 11). In figure 11 the calculations of heat flux (fw)’ (with model ¢? = 4.8)
apparently deviate from experiments. Therefore there is no universal constant value
of ¢° for all flows: from a physical point of view, the return to isotropy (¢{6u,> €/q?)
in the heat-flux equation should depend on the production mechanisms of the velocity
and temperature fields. The timescale ratio r, as Newman et al. (1981) pointed out,
depends on these production mechanisms and changes among flows with differing
influences of the production mechanisms. Therefore ¢ must depend on the timescale
ratio and must change its value from flow to flow. The form ¢° = 1+r+H(r) Flé)

((2.28)) with H = 1.1 works very wecll in all the cases we have, as shown in figures
2-10.

4. Conclusion

We have presented a model for the passive scalar flux equation. We have
demonstrated two aspects of the influence of the timescale ratio on scalar flux
relaxation. First, we must use the equation for ¢, to calculate the real value of the
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Fieure 11. Comparing normalized heat flux with different forms
for ¢% in the heat-flux equation.

timescale ratio r rather than estimating €, directly through explicit specification of
a constant value for the timescale ratio r = (¢2/€)/({8%)/€,} (most of the dashed lines
in the figures deviate from experiment). Secondly, the ¢? in the scalar flux equation
must not be a universal constant and the form of ¢¢ should include the effect of the
timescale ratio. The results of our calculations compared with Sirivat & Warhaft
(1981) show that our model can correctly estimate the behaviour of homogeneous
scalar turbulence and could provide a basis for models describing more complex scalar
flows.
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